
February 23, 2017 Solution
Statistics - II - MIDTERM Exam - Semester II

1. Suppose X1, X2, . . . , Xm and Y1, Y2, . . . , Yn are independent random samples, respectively, from
N(µ1, σ

2) and N(µ2, σ
2), where −∞ < µ1, µ2 <∞, σ2 > 0.

(a) Does this model belong to the exponential family of distributions? Justify.

(b) Find the minimal sufficient statistics for the unknown parameters. Is it complete?

(c) Find the MLE and UMVUE of σ2.

Solution:

(a) Let θ = (µ1, µ2, σ
2). The joint probability density function ofX1, X2, . . . , Xm and Y1, Y2, . . . , Yn

is

f(x,y|θ) =
1

(
√

2π)m+n(σ2)(m+n)/2
exp
(
−
∑m
i=1(xi − µ1)2 +

∑n
j=1(yj − µ2)2

2σ2

)
, for x ∈ Rm,y ∈ Rn.

The pdf can be written as

f(x,y|θ) = c(θ)h(x,y)exp
( 3∑
i=1

wi(θ)ti(x,y)
)
,

where

c(θ) =
1

(σ2)(m+n)/2
exp
(
− mµ2

1

σ2
− nµ2

2σ2

)
,

w1(θ) = − 1

2σ2
t1(x,y) =

m∑
i=1

x2i +

n∑
j=1

y2j

w2(θ) =
µ1

σ2
t2(x,y) =

m∑
i=1

xi

w3(θ) =
µ2

σ2
t3(x,y) =

n∑
j=1

yj

h(x,y) =
1

(
√

2π)m+n
.

The distribution of X1, X2, . . . , Xm, Y1, Y2, . . . , Yn belongs to a 3-variate exponential family.

(b) From (a) and using the Factorization Theorem, (
∑m
i=1X

2
i +

∑n
j=1 Y

2
j ,
∑m
i=1Xi,

∑n
j=1 Yj) is

sufficient for (µ1, µ2, σ
2). Next, we show that it is also a minimal sufficient statistic.

Let (x1,y1) and (x2,y2) denote two sample points. Then, the ratio

f(x1,y1|θ)

f(x2,y2|θ)
=

exp
(
− [
∑m
i=1 x

2
i,1 +

∑n
j=1 y

2
j,1 − 2µ1

∑m
i=1 xi,1 − 2µ2

∑n
j=1 yj,1]/2σ2

)
exp
(
− [
∑m
i=1 x

2
i,2 +

∑n
j=1 y

2
j,2 − 2µ1

∑m
i=1 xi,2 − 2µ2

∑n
j=1 yj,2]/2σ2

)
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is independent of µ1, µ2, σ
2 if and only if

∑m
i=1 x

2
i,1 +

∑n
j=1 y

2
j,1 =

∑m
i=1 x

2
i,2 +

∑n
j=1 y

2
j,2,∑m

i=1 xi,1 =
∑m
i=1 xi,2 and

∑n
j=1 yj,1 =

∑n
j=1 yj,2.

Hence, (
∑m
i=1X

2
i +
∑n
j=1 Y

2
j ,
∑m
i=1Xi,

∑n
j=1 Yj) is a minimal sufficient statistic for (µ1, µ2, σ

2).

The statistic (
∑m
i=1X

2
i +

∑n
j=1 Y

2
j ,
∑m
i=1Xi,

∑n
j=1 Yj) is complete if {(w1(θ), w2(θ), w3(θ)) :

θ ∈ Θ} contains an open set in R3. Here, Θ = R2 × (0,∞). Hence, the statistic is also a
complete sufficient statistic.

(c) The MLE for σ2.

From (a), the log-likelihood for estimating θ can be written as

L(θ|x,y) = log(f(θ|x,y)) = C −
∑m
i=1(xi − µ1)2 +

∑n
j=1(yj − µ2)2

2σ2
− n+m

2
log(σ2),

where C is independent of θ. The partial derivatives, with respect to µ1, µ2 and σ2 are

∂L(θ|x,y)

∂µ1
=

m∑
i=1

xi − µ1

σ2

∂L(θ|x,y)

∂µ2
=

n∑
j=1

yj − µ2

σ2

∂L(θ|x,y)

∂σ2
= −n+m

2σ2
+

1

2σ4
(

m∑
i=1

(xi − µ1)2 +

n∑
j=1

(yj − µ2)2).

Setting these partial derivatives to 0 and solving the equations yield the following solutions

µ̂1 =

m∑
i=1

xi
m

= x̄m µ̂2 =

n∑
j=1

yj
n

= ȳn

σ̂2 =
1

n+m

( m∑
i=1

(xi − x̄m)2 +

n∑
j=1

(yj − ȳn)2
)

Next, to show that the σ̂2 is the MLE of σ2.

For µ1 6= x̄m,
∑m
i=1(xi − µ1)2 >

∑m
i=1(xi − x̄m)2. Similarly, for µ2 6= ȳn,

∑m
j=1(yj − µ2)2 >∑n

j=1(yj − ȳn)2. Hence, for any value of σ2,

1

(σ2)(m+n)/2
exp
(
−
∑m
i=1(xi − µ1)2 +

∑n
j=1(yj − µ2)2

2σ2

)
≤

1

(σ2)(m+n)/2
exp
(
−
∑m
i=1(xi − x̄m)2 +

∑n
j=1(yj − ȳn)2

2σ2

)
.

From the above, we only need to show that 1
(σ2)(m+n)/2 exp

(
− (
∑m
i=1(xi − x̄m)2 +

∑n
j=1(yj −

ȳn)2)/2σ2
)

attains its maximum at σ̂2. Let

log(g(σ2|x,y)) = −
∑m
i=1(xi − x̄m)2 +

∑n
j=1(yj − ȳn)2

2σ2
− n+m

2
log(σ2).
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Then, setting the derivative of this function with respect to σ2 to 0, yields the unique solution
σ̂2. Also,

d2log(g(σ2|x,y))

d(σ2)2

∣∣∣
σ2=σ̂2

< 0.

Therefore, the MLE of σ2 is σ̂2.

From (b) the statistic (
∑m
i=1X

2
i +

∑n
j=1 Y

2
j ,
∑m
i=1Xi,

∑n
j=1 Yj) is complete. To find the

UMVUE for σ2 we only need to look for an unbiased estimator for σ2 based on the statistic.
σ̂2 is the MLE for σ2 and is based on (

∑m
i=1X

2
i +

∑n
j=1 Y

2
j ,
∑m
i=1Xi,

∑n
j=1 Yj). We check for

unbiasedness.

E(σ̂2) =
n+m− 2

n+m

Hence, (n+m)σ̂2/(n+m− 2) is the UMVUE for σ2.

�

2. (a) Let U and V be two (jointly distributed) statistics such that U has finite variance. Show that

V ar(U) = V ar(E(U |V )) + E(V ar(U |V )).

(b) Suppose (X1, X2, . . . , Xn) has probability distribution Pθ, θ ∈ Θ. Let δ(X1, X2, . . . , Xn) be an es-
timator of θ with finite variance. Suppose that T is sufficient for θ, and let δ?(t) = E(δ(X1, X2, . . . , Xn)|T =
t), be the conditional expectation of δ(X1, X2, . . . , Xn) given T = t. Then, arguing as in (a), and
without applying Jensen’s inequality, prove that

E(δ?(T )− θ)2 ≤ E(δ(X1, X2, . . . , Xn)− θ)2,

with strict inequality unless δ = δ?(i.e., δ is already a function of T ).

Solution:

(a)

V ar(U) = E(U2)− [E(U)]2 = E(E(U2|V ))− E([E(U |V )]2) + E([E(U |V )]2)− [E(U)]2

= E(V ar(U |V )) + E([E(U |V )]2)− [E(E(U |V ))]2

= E(V ar(U |V )) + V ar([E(U |V )]).

(b) E(δ(X1, X2, . . . , Xn)) = θ. In (a), put U = δ(X1, X2, . . . , Xn) and V = T . Then,

E(δ(X1, X2, . . . , Xn)− θ)2 = V ar(E(δ(X1, X2, . . . , Xn)|T )) + E(V ar(δ(X1, X2, . . . , Xn)|T ))

≥ V ar(E(δ(X1, X2, . . . , Xn)|T )), (1)

because E(V ar(δ(X1, X2, . . . , Xn)|T )) ≥ 0. As

V ar(E(δ(X1, X2, . . . , Xn)|T )) = V ar(δ?(T )) = E(δ?(T )− θ)2

we get
E(δ(X1, X2, . . . , Xn)− θ)2 ≥ E(δ?(T )− θ)2.

The equality exists if E(V ar(δ(X1, X2, . . . , Xn)|T )) = 0, i.e.

E(E[(δ(X1, X2, . . . , Xn)− δ?(T ))2|T ]) = 0

=⇒ δ(X1, X2, . . . , Xn)− E(δ(X1, X2, . . . , Xn)|T ) = 0,

i.e. δ is a function of T .
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3. Suppose X1 ∼ Binomial(n1, p) which is independent of X2 ∼ Binomial(n2, p), where n1 and n2 are
fixed and 0 < p < 1.

(a) What is the conditional distribution of X1 given X1 +X2 = k?

(b) Using (a) show that X1 +X2 sufficient for p.

Solution: The distribution of Xi, i = 1, 2 is

P (Xi = x) =

(
ni
x

)
px(1− p)ni−x, x = 0, 1, . . . , ni.

The distribution of X1 +X2 is

P (X1+X2 = k) =

k∑
j=0

P (X1 = j)P (X2 = k−j) =

k∑
j=0

(
n1
j

)(
n2
k − j

)
pk(1−p)n1+n2−k, k = 0, 1, . . . , n1+n2.

(a) The conditional distribution of X1 given X1 +X2 = k is

P (X1 = x|X1 +X2 = k) =
P (X1 = x,X2 = k − x)

P (X1 +X2 = k)

=

(
n1

x

)(
n2

k−x
)
pk(1− p)n1+n2−k∑k

i=0

(
n1

i

)(
n2

k−i
)
pk(1− p)n1+n2−k

=

(
n1

x

)(
n2

k−x
)∑k

i=0

(
n1

i

)(
n2

k−i
) , x = 0, 1 . . . , k.

(b) The ratio of the joint distribution of X1 and X2, and the distribution of X1 +X2 is

P (X1 = x1, X2 = x2)

P (X1 +X2 = t)
=

(
n1

x1

)(
n2

x2

)∑t
i=0

(
n1

i

)(
n2

t−i
) , t = x1 + x2,

for all xi = 0, 1, . . . , ni, i = 1, 2. As this ratio is independent of p, X1 +X2 is sufficient for p.

�

4. Let X∼ Poisson(λ), λ > 0, and let Y = 1 when X > 0, and 0 otherwise.

(a) Find the Fisher information on λ (say, I(X)(λ) and I(Y )(λ), respectively) contained in X and
Y .

(b) Compare I(X)(λ) and I(Y )(λ).

Solution:

(a) The pmf of X is

fλ(x|λ) =
e−λλx

x!
, x = 0, 1, . . . .
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Y is a bernoulli random variable, with P (Y = 1) = 1− e−λ. The pmf of Y is

gλ(y|λ) = (1− e−λ)ye−λ(1−y), y = 0, 1.

As
∂log(fλ(x|λ))

∂λ
= −1 +

x

λ
,

I(X)(λ) = Eλ

[
− 1 +

X

λ

]2
=

1

λ
.

As
∂log(gλ(y|λ))

∂λ
= −1 +

y

(1− e−λ)
,

I(Y )(λ) = Eλ

[
− 1 +

Y

(1− e−λ)

]2
=

1

eλ − 1
.

(b) From (a) and that eλ − 1 > λ for all λ > 0, I(Y )(λ) < I(X)(λ) for all λ > 0.

�
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